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A numerical method of generalized solution of the unsteady heat transfer involving a moving 
boundary in a plate, cylinder and sphere is presented. The problem has been solved with the 
assumption of negligible hydrodynamic velocity but the latent heat, the sensible heats and the 
different (but constant) thermal properties of both phases, any symmetric initial temperature 
distribution and variable heat transfer coefficient are taken into account. The combination 
of the Binder-Schmidt explicite method with the implicite method for the central plane (axis, 
center) has been used, what warrants the stability of the computation with the use of the same 

. great modulus M 0·5 for all three geometries considered. The dependence of the heat transfer 
area on the radius in the cylinder and sphere during the solidification is taken into account. 

The transient cooling of a body and the moving interface problem are of great inter
est from theoretical as well as practical point of view, and ha~e been amply studied. 
Many papers have appeared in the scientific literature, in which the authors attempt 
to solve this problem. The process can be formulated by a set of partial differential 
equations but their analytical solution is not possible; even the numerical solution 
is not simple and easy. That is the reason of various simplifying assumptions made 
by the authors to get the time of freezing and the rate of interface movement. A very 
good review of the past work relating to moving boundary studies has been reported 
by Longwell l and Ta0 2 and is not repeated here. Longwell l proposed a very inte
resting graphical method to include the heat capacity and the different thermal pro
perties of both phases and solved the moving interface problem for any initial tempe
rature distribution in the liquid . His graphic explicite difference solution has not been 
generalized for different body shapes and is not suitable for numerical computation; 
his way of using various radial differences in each phase would make the eventual 
computation difficult. Ta0 2 has proposed an excellent generalized numerical solu
tion of freezing but for the saturated liquid only and his way of computation the 
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temperature in the axis (center) and the freezing time oCthe central shell in cylindrical 
(spherical) geometry is not obvious. The present paper attempts to solve the problem 
of cooling and freezing in a generalized form suitable for numerical computation 
and without limitation to the saturated liquid, and thus to combine the outstanding 
features of both Longwell and Tao's work . 

THEORETICAL 

The cooling and solidifying of an infinite plate of finite thickness , infinitely long cylin
der and sphere is described by the general Fourier equation of heat conduction: 

(I) 

The whole process can be devided in three sections. In the first section the liquid 
body cools, in the second it cools and solidifies and in the last section cools the solid 
body. (The solution is valid for the heating and melting, too , but for the sake of 
simplicity only cooling and solidifying will be spoken about.) 

For the solution , of the problem, it is assumed that the material has definite, sharp 
melting point, i.e. that it solidifies at a single, unit temperature. Further, it is postulat

ed, that there is no free convection in the liquid phase during its cooling. Under 
these assumptions the boundary conditions of the problem are defined by the follo
wing equations: the temperature of the cooling medium 

(2) 
the symmetry condition 

(iJe jiJR)o r = 0, (3) 

convective heat transfer from the body to the medium 

(4) 

the rate of the moving boundary 

(5) 

the temperature at the interface of both phases 

e~ . r . f = e~ . r .g = e s = const. (6) 

Eq. (I) and the boundary conditions are made dimensionless by introducing the 
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dimensionless temperature t, time Tand coordinate r: 

(Ia) 

tr l> I .T = 0 , (2a) 

(atlar)O.T = ° , (3a) 

(atlar)"T = -Bi x t l •T , (4a) 

(5a) 

Ic.T,f = 1e .T .g = ts = const. (6a) 

The use of Tg in Eq. (5a) emphasizes that the dimensionless time is formed with the 
thermal diffusivity of the phase g. 

The solution of this system of equations is not straightforward and it will be solved 
by finite difference method. For the solution the explicit Binder-Schmidt3

•
4 difference 

method has been used in combination with the implicit method for the central shells. 
The body is divided by 11 = N areas parallel with the surface of the body into N shells 
of thickness t'::!.r and the time of cooling into k identical intervals t'::!. T. The dividing 
areas are counted from the central plane (axis, center). that has the number 11 = 0, 
to the surface of the body. Their coordinates are then 

(7) 

The difference form of the Eq. (I a) is then 

(8) 

where 

(9) 

(10) 

(11) 

By substitution from Eqs (7, 9 - 11) into the Eq. (8) and rearranging, the Eq. (8) 
becomes 
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tn .k = Mt ll + I,k - I (I +!.) + Mtn - I .k - I (I -~) + f ll •k - I (I - 2M) , (12) 
211 2n 

where 

(13) 

The Eq. (12) gives the temperature- time dependence in the inside of the body during 
its cooling. To get the temperature in the central plane (axis, center) and on the surface 
of the body, the boundary conditions (Eq. (3) and Eq. (4)) must be taken into account. 

For the central plane (axis, center) it follows from Eq . (fa) 

(~) = lim(~ + ~~) = (I + b)(!!2) . 
oT 0 .1' r-O or2 r or or2 0,1' 

(14) 

This equation could be transformed into the explicit difference equation by the same 
way as the Eq. (Ia), but to guarantee the stability of the so lu tion even for the highest 
value of M = 0·5, it is advantageous to use the implicit form (see e.g. Sauljev 5

): 

(15) 

In the combination with the explicit solution for the other shells it is possible to use 
this equation in explicit form, too. From the boundary condition (Eq. (3a)) it follows 
that tl ,k = LI,k; substitution of the quantity M (Eq.(I3)) leeds then to the explicit 
equation 

l =2M(1+b)ll,k+lo.k_ 1 
O,k 1 + 2M(l + b) 

(16) 

The solution of this Eq . is stable for M = 0'5, whereas in the case of explicit formula
tion it would be necessary to use M ~ 0,25 to secure the solution stability, what 
would prolong the computation considerably. 

The boundary condition (Eq. (4a)) defll1es the slope of the tangent to the temperature 
distribution on the surface of the body. This tangent must go through the point 
that defines the temperature on the surface of the body, i.e. the point with the coordina
tes r = 1 and tr= 1; its equation is therefore 

t - t.=I,1' = -Bi x tr = I,1'(r - 1). (17) 

and it goes through the point P(r = 1 + I/Bi; t = 0). Any tangent to the temperature 
distribution curve on the surface of the body must go through this point. 
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The further solution of the boundary condition (Eq . (4a)) depends on the way 
in which the body has been divided. As the most suitable is recommended such 
a division , that ends in the distance of half an interval t'lr outside the surface of the 
body. This kind of division gives the highest accuracy of the computed surface tempe
rature (and thus of the temperature distribution in the whole body). A great disadvan
tage of this way of division is the dependence of the number of shells on the Biot 
number (see Eq. (21)). That means , that it is necessary to use a great number of shells 
in the case of a great Bi , what makes the computation long and expensive. The other 
kind of division does not use the fictious half-interval and ends on the surface of the 
body. The solution is not so exact but there is no dependence of the number of shells 
on the Bi and the cases with a great Bi(Bi > 100) can easily be solved in a reasonable 
time. The boundary condition (Eq. (4a)) has been solved for both ways of division, 
from which each is suitable for another group of problems. 

Dividing the body in the first way, the division ends on the fictious area n = N 
in the distance 0·5 t'lr outside the surface of the body. Then it is 

t'lr = I j(N - 0'5) (18) 

and the coordinate of any dividing area n is 

1'" = I1j(N - 0'5). (19) 

The line (Eq. (/7)) intersects the fictious area n = N in the point that gives the fictious 
temperature on this area. This temperature is defined by the substitution of the equa

tion of the area /I = N, i.e. I'll = Nj(N - 0'5), into the Eq. (17): 

(N.k = (N - O'5.k(2N - 1 - Bi)j(2N - 1). (20) 

By this equation the minimum number N min of shells , that allows the solution of the 

problem, is defined: 

N min = 0'5(Bi + 1). (21) 

As the first step of the solution one determines from the Eq. (20) the temperature 
on the fictious area in the time T = O. Using this point and the known initial tempera
ture distribution in the body, it is possible following the Eqs (12) and (16) to compute 
the temperatures on the areas 11 = 0 till n = N - 1 in the time interval k = 1. 
The tangent to the temperature curve in this and in all further steps is approximated 
by the line connecting the point IN-I with the point P. The intersection of this line 

with the surface and the fictious area determines the surface temperature tN-O,S 
and the temperature tN on the fictious area: 
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IN-O ·5.k = (N - I.k(2N - l) j(2N - I + Bi) , (22) 

(N .k = t" _1.k(2N - I - Bi) j(2N - I + Bi) . (23) 

The solution in the other case of division, tha t ends on the surface of the body, 
is quite a similar one. In this case it is 

I1r = I jN , (24) 

rn = /l jN. (25) 

The surface temperature lies on the line connecting the temperature fN - 1 with the 
point P: 

tN.k = IN_I,kNj(N + Bi). (26) 

Having calculated the temperature distribution in the body and on its surface 
(Eqs {l2, 16)and (22) or (26)), resp. on the fictious area (Eq. (23)) in the time interval k, 
one can continue the calculation in the time interval Ie + I and so on until the mo
ment, when the surface temperature reaches the temperature of solidification or some 
lower temperature. If the last time increment to reach this temperature is fractional , 
a proportional adjustment of all the last temperature increments is also made. 

In such way, the temperature distribution is determined in the moment, when the 
surface of the body reaches the temperature of solidifying and the body begins to 
solidify. In this moment the latent heat begins to be released and the solid- liquid 
interface appears . For the computation of the time dependence of the temperature 
distribution, the boundary conditions (5a) and (6a) must be taken into account. 

The increment of the interface coordinate de in the Eq. (5a) can be defined in the 
difference form as the ratio of the volume increment I1V of the new phase g to its 
surface F and the difference form of the Eq . (5a) is 

(27) 

The volume increment I1V in the time interval I1Tg is small and unknown. Therefore, 
the volume increment of phase g, that has the thickness I1r of one shell , will be used 
for computation. The time of solidification of this shell is computed as a multiple 
P I1Tg of the time interval used. On the left side of the Eq. (27), the mea n temperature 
difference during all P time intervals is used , what leads to the relation 

p 

I [(l1tjM)i ,i ,g - (kr/kg) (l1tjM)i'i ,rJ = K I1vjF I1Tg, (28) 
j=l 
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where the coordinate e of the interface has been substituted by the index i, which 

means the number of the inner area of the solidifying shell. In the Eq. (28), the tem

perature differences ~/i next to the interface are defined by the equations. 

~ti.j,f = t i - l •j - ti' ~/i .j .g = Ii - (i+l .j· 

Including Eqs (29) and (13) into Eq . (28), it becomes 

p 

2: [Ii + (kr/kg)(t i - li - I,J - t i+ l.J = K ~VIMFMg . 
j = 1 

(29) 

(30) 

This equation is valid for all shells except the central one; during the last step of soli

difying, when the interface reaches the place with coordinate r = 0, the liquid phase 

disappears and the Eq. (30) reduces to 

P 

2: (Ii - Il •j ) = K ~VIMFMg = CK/Mg • 

j = 1 ' 
(31) 

The left sides of the Eqs (30) and (31) are generaly valid for all three types of bodies 

concerned. The value of the ratio ~ V/~rF depends on the form of the body and 

on the position of the solidifying shell, however. For the first shell its value has been 

designated as C (Eq . (31)), for the shells n = 2 to n = N - 1 as B and for the last 

shell II = N as A. 

To reach high accuracy of the solution, it is advantageous to define the volume 

increment and its surface area in the difference form that approaches 4>heJeal condi

tions . 

a) Plate. For shells n = I to n = N - I is ~V = F ~r = const. and F = const. , 

so that C = B = 1. If the body is divided without the fictious half-shell, the same 

is valid for the N-th shell , too: A = B = J. In the other case the thicknes5 of the 

N-th shell is only a half of the thickness of other shells and A = 0·5. 

b) Infinite cy linder. The volume increment of the phase g (for the unit length 

of the cylinder) is 

(32) 

As the mean area of the phase interface during the solidification of the shell the loga

rithmic mean area is the most suitable: 

F/L= 21t~M - iM = 21tM . 

ln~ ln~ 
(33) 
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For the shells n = 2 to 11 = N - 1, the value B is then 

B = (i + 0'5) In ~, (34) 
I 

which is valid for the N-th shell, too, in the case of the body division without the 

fictious half-shell . In the other case, the relation (35) can be derived in the same way 
as before : 

A = (N - 0'75) In N - 0·5 . 
N-l 

(35) 

For the central shell Longwell! recommends to take for the computation of the 

mean area the inner radius r = (0'1 ~ 0'11),1,. instead of r = O. The value of C is 
then 

C = 1·25 (36) 

c) The sphere . The volume increment of the phase g in this case is 

As the mean heat transfer area during the solidifying of the shell the geometric mean 

of the boundary areas is taken: 

F = 41t(i + I) M . i.1r = 41t Ar2 i(i + 1) . (38) 

The value of B is then 

B = (3i 2 + 3i + 1 )J(3i 2 + 3i) (39) 

and in the case of the division of the sphere without the fictious half-shell is B valid 

for shells 11 = 2 to 11 = N. Otherwise it can be derived for the N-th shell the equa
tion 

A = [(N - 0'5)3 - (N - 1)3]J3(N - 0'5) (N - 1) . (40) 

For the ca-lculation of the mean heat transfer area in the first shell, the inner radius 

is taken similarly as in the case of the cylinder r = (0'10 -;- 0']1) .1r, what gives for C 

C = 3. (41) 
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Course of Computation 

During the simple cooling of the body (phase f or g), the temperature distribution 
in the body is determined following the Eqs (12, /6,22,23), eventualy Eq. (26) using 
the appropriate physical constants for each phase. During the solidifying of the 
n-th shell, the temperature distribution is determined by the same equations as well 
as the Eq. (6a), which is valid just from the beginning of the solidification of each 
shell, and at the same time the values of f(p) are computed: 
for i = N - I: 

f(p) = AK/M~ - t [fi + (kr/kg)(t i - t i- I •j ) - ti+ I.J ' (42) 
j= 1 

for I ~ i ~ N - 2: 

f(p) = BK/ Mg - f [ti + (kr/kg)(t i - t i - I ) - ti+I,J, (43) 

for i = 0: 
j=l 

f(p) = CK/Mg - t (ti - f l •j ). 
j=l 

(44) 

If f(p) = 0, then p = P and the computation of the solidification of another 
shell follows. If f(p - I) > 0 and f(p) < 0, then the number P of the time intervals 
of the solidification of the shell as well as the temperature distribution in the body 
in the time of complete solidification of the shell are determined by linear inte~£olation. 
This final temperature distribution is the starting distribution for the computation 
of the solidification of the shell n - 1 and so on, untill the whole body is solid. 

The stability of this solution for M = 0·5 for all three body shapes concerned 
is guaranteed by the use of implicit Eq. (16). 

During the solidification it is necessary to choose the same time interval for be>th 
phases. It follows then from the definition of the modulus M, that if a r ~ ag, it is 
necessary to choose for each phase either different division (L1rr ~ L1rg) or different M 
(Mr ~ Mg). [n the present paper the same division L1r and different M have been 
used in that way, that for the phase with greater thermal diffusivity a the M can have 
the highest value M = 0'5, so that M < 0·5 for the other phase with a smaller a 
and the computation is stable for both phases. This way of solution is believed to be 
simpler and more suitable than that of Longwell l

. 

Computing with dimensionless quantities, the dimensionless time increment L1 T 
cannot be the same for both phases, as it contains the thermal diffusivity a. In the 
course of the computation with the aid of derived equations, the temperature change 
is computed with the same time interval for both phases. If the value of a is known 
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that has been used for the dimensionless interpretation of the time, it is easy to de
termine the real time of the temperature change and solidification. In the present: 
paper the af bas been used for the cooling of the phase J, and a g for the solidification 
and the cooling of the phase g. 

To perform computations following the proposed method, a programme for the 
computer National Elliot 803B in autocode 3 has been elaborated . The programme en
ables for any Biot number the computation of simple cooling or heating as well as that 
of the case with the change of phase and with the interface movement, the computa
tion with or without the fictious auxiliary half shell, with dimensional or dimensionless 
quantities, with any initial temperature distribution in the body and with constant 
or variable heat transfer coefficient h and temperature of the ambient medium . Out
put are the time, the temperature at the surface and in the central plane (axis, center) 
of the body during the cooling and the time of solidification and the temperatures 
at each dividing area in the moment of the total solidification of each shell during 
the change of phase. 

EXAMPLES 

1. Simple cooling. Grigull6 proposed a new method to solve the temperature field in the body 
at very small times of cooling or heating and demonstrated its use having calculated the surface 
temperature of a concrete plate after its convective cooling (Bi = 7'2) at the dimensionless time 
T= 0·00697. The result of the calculation following his method has been T= 0·567. The results 
of numerical computation following the method of this work with various conditions of the body 
and time division have been tabulated in Table I . 

With the division of the body in N = 30 shells and using the fictious half-shell, a sufficiently 
accurate result has been obtained, what has not been achieved even with 40 shells without the 
use of the half-shell. 

2. Freezing of a saturated liquid in cylinder. The solidification time of a saturated liquid in the 
form of an infinitely long cylinder is given together with the results of Tao's2 computation in 

TABLE I 

Surface Temperature of a Concrete Plate after a Cooling Time T = 0·00697 

!o..T.104 
Surface temperature of the plate 

N 
half-shell used without half-shell 

10 13·94 0·5568 0·4787 
25 6·970 0·5663 0'5325 
30 5-362 0·5668 0·5380 
40 3-168 0·5671 0·5441 
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Table H. It is evident that the solidification times of single shells as well as the time of complete 
solidification are slightly higher than that of Tao. 

3. Freezillg of a liquid illitiaiy at higher thall fusion temperature. The solidification time of such 
a liquid evidently must increase. This en crease will be the higher, the higher will be (for the same 
initial temperature) the thermal diffusivity of the solid in comparison with the liquid phase. 
The time dependence of the interface position and the temperature in the central plane (axis, 
center) of a plate, cylinder and sphere for the case of the same thermal diffusivity of both phases 
and for the case, when the thermal diifusivity of the solid phase is three times greater than that 
of the liquid phase, is given in Table III and in Fig. 1. The temperature of solidification is ts = 0'8, 
the initial temperature to = 1. The dimensionless time has been calculated with the aid of the 
thermal diffusivity of the solid phase. 

DISCUSSION 

The computational programme prepared on the basis of the derived equations 
enables the computation of the temperature field and the interface position in an 
infinite plate of finite thickness, infinitely long cylinder and sphere with a high 

TABLE II 

The Freezing Time of an Infinitely Long Cylinder 
N= 40, K= 1, I/Bi = 0, to = ts = 1. 

this paper 

0·975 0·000625 
0·950 0·001852 
0·925 0·003892 
0·900 0·006698 
0·800 0·02526 
0·700 0'05457 
0'600 0'09323 
0·500 0'1396 
0·400 0·1918 
0·300 0'2473 
0·200 0'3030 
0·100 0·3539 
0·075 0·3650 
0·050 0·3750 
0·025 0·3835 
0·000 0·3904 

T 

0·00040 
0·00164 
0·00367 
0·00647 
0·02499 
0·05405 
0'09254 
0·13889 
0·19089 
0·24618 
0·30153 
0·35217 
0·36314 
0·31297 
0·38123 
0·38698 

a After the complete tabulation of computation results that has been obtained by favor of Tao 
(eI 2

). 
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TABLE III 

The Freezing of a Plate, Cylinder, and Sphere 
N = 10, K= I, Bi = 100, to = 1, Is = 0·8 . 

- - -----_.-
T 

--.----.-~ ------""---" '-. 

--,- ----

plate cylinder sphere 
- ---------_._--------------_ .• . - ---------- -

ag = or ag = 3ar ag = or ag = 3ar ag = or ag = 3ar 

0·9 0·0157 0·0147 0·0157 0·0147 0·0156 0·0147 
0·8 0·0481 0·0444 0·0452 0'0426 0·0427 0·0410 
0·7 0·1014 0·0941 0·0896 0·0853 0·0812 0·0791 
0·6 0'1743 0·1609 0·1447 0·1405 0 '1262 0·1256 
0·5 0·2621 0·2476 0·2062 0·2051 0·1748 0'1768 
0·4 0·3592 0·3522 0·2721 0·2754 0·2253 0·2293 
0·3 0·4660 0·4696 0·3414 0·3471 0·2756 0·2803 
0·2 0·5867 0·5946 0-4112 0-4172 0·3231 0·3278 
0·1 0·7230 0·7309 0-4772 0·4831 0·3662 0·3708 
0·0 0·8749 0·8828 0·5363 0·5422 0·4276 0·4322 

3233 

--" 

_.- --- - - --_._--_ .. ,--------

accuracy. It is suitable for the computation of 
processes with the boundary condition of 1st and 
3rd kind, with constant or variable heat transfer 
coefficient and temperature of the coolingor heat
ing medium and with different (but constant) 
physical properties of both phases. The use of the 
auxiliary half-sheIl increases the accuracy of the 
results and is therefore advisable at lower Biot 
numbers (Bi < 60). For higher Bi, however, 

FIG. 1 

The Time Dependence of the Central Temperature of 
the Plate (a), Cylinder (b), and Sphere (c) (Cooling and 
Solidifying of a Superheated Liquid) 

10 = 1, Is = 0'8, Bi = 100, K = 1, N = 10. Curves: 
1 a g = ac; 2 ag = 3ar. 
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the grid used should have to be very fine (more than 30 shells), what would require 
a long time of computation. Computing the simple cooling or heating, the division 
of the body in N = NOlin + 5 shells (with the use of the half shell) gives for T> 0·3 
practically exact results (for N min see Eq. (21)) . Division in N > 30 shells gives 
exact results even for very small times, as has been demonstrated by Example l. 
The results of the computation under various conditions show the higher precision 
of the computation with the half-shell. Nevertheless, the division N > 20 is for 
T ~ 0·3 and Bi > 60 sufficiently accurate for practical purposes even without the 
use of the half-shell. 

The solidification time of the infinitely long cylinder from the Example 2 is longer 
than the time calculated by Ta0 2

• This difference is caused partly by different way 
of the computation of the solidification time of the outer shell, partly - and above 
all - by the use of the logarithmic mean of the heat transfer areas during the solidi
fication of single shells and by the method used in this paper to compute the time 
of solidification of the central shell. 

As the use of logarithmic (geometric) mean of heat transfer areas in the case 
of cylindrical (spherical) geometry is the most suitable way of approximation, the 
present results can be believed to be closer to the reality; the difference between both 
methods is small, however. 

The main contribution of this work lies in the solution of the method of computa
tion of the temperature field, time of solidification and interface position for the 
bodies initially at other than the fusion temperature and with any symmetric initial 
temperature distribution, which takes into account heat capacities and different 
thermal properties of both phases. 

The financial help of the Institute of Chemical Technology, Pardubice is acknowledged. 

LIST OF SYMBOLS 

A 

b 
B 

Bi = hRo/k 

C 
e = 'I/Ro 
F 
h 

thermal difusivity 
defined by Eqs (35) and (40) 
shape factor; 0 for plate, 1 for cylinder, 2 for sphere 
defined by Eqs (34) and (39) 
Biot number 
specific heat capacity 
defined by Eqs(36) and (41) 
dimensionless coordinate of the phase interface 
heat transfer area 
convective heat transfer coefficient 
number of dividing area on which lies the interface 

j number of the time interval during the solidification of a shell 
k thermal conductivity; number of time interval 
K = L/ci90 - 9 p) dimensionless heat of fusion 
L heat of fusion 

Collection Czechoslov. Chern. Commun./Vol. 36( (1971) 



Generalized Numerical Solution of Heat Equation 3235 

M = a ",:r/ !!.R2 = !!. T/ !!.r 2 modulus of numerical solution of Eq. (12) 
number of coordinate interval 

N number of dividing areas (number of shells) 
p number of time intervals elapsed from the start of solidification of a shell 
P number of time intervals for solidification of one shell 
r = R/Ro dimensionless coordinate 
!!.r = !!.R/ Ro dimensionless coordina te interval (thickness of a shell) 
R coordina te with the origin in the central plane of plate, axis of cylinder or center 

of sphere 
Ro half-plate thickness, radius of cylinder or sphere 
t = (8 - 8 p )/ (80 - 8 p ) dimensionless temperature 
to = 1 dimensionless initial temperature 
T = ar/ R5 dimensionless time (Fourier number) 
V volume 

Subscripts 

difference, interval 
coordinate of the phase interface 
temperature 
initia l temperature of the body in the central plane (axis, center) 
ambient temperature 
density 
time 

f, g initial and newly formed phase, respectively 
k number of time interval 

number of coordinate interval 
solidification (fusion) conditions 
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